有些內容使用中英雙語,有些只有英文或中文。歡迎使用與分享任何內容,但先來信告知並標示此部落格為出處。
Some parts use both Chinese and English, but some parts use only one language. Feel free to share, but please contact me first and list this blog as your reference.

2014年2月13日 星期四

UVa OJ - 10193 All You Need Is Love

The following program is my ACcepted code for UVA-10193 .
It's a for everybody to learn and discuss.
If there is any mistake or comment, please let me know.  :D

此乃UAV 10193 的AC code!
歡迎一同討論學習,如有錯誤與任何建議請留言 : )

點這裡看題目 Click here to see this Problem!


//This program is for UVA 10193 All You Need Is Love
//http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=13&page=show_problem&problem=1134
/*
S is made of Love when "S can be divisible by L." (with no remainder)
When (S1%L == 0 && S2%L == 0), we have "All you need is love!"
otherwise, we get "Love is not all you need!"
we want "(S1%L == 0 && S2%L == 0)" is true.
So we have to find a L, which is Common Divisor of S1 and S2.
And this L is not 1 !
*/
#include<stdio.h>
#include<string.h>
// convert a binary number to decimal
int binaryToDecimal(char a[])
{
int len = strlen(a);
int m =0;
m = a[0] - '0';// change the character to integer
for(int i = 1; i < len; i++)
{
m *= 2;
m += a[i] - '0';// change the character to integer
}
//printf("str: %s m: %d\n", a, m);// for check
return m;
}
/* find the Greatest Common Divisor
The parameter a must be bigger than b!
use the recursive to find GCD.
*/
int GCD(int a, int b)
{
if(b > a)
return GCD(b, a);
if(b == 0)
return a;
else
return GCD(b, a%b);
}
int main()
{
int n, x, y, gcd;
char s1[32], s2[32];
scanf("%d\n", &n);
for(int t = 1; t <= n; t++)
{
gets(s1);
gets(s2);
x = binaryToDecimal(s1);
y = binaryToDecimal(s2);
gcd = GCD(x, y);
if(gcd != 1)
printf("Pair #%d: All you need is love!\n", t);
else
printf("Pair #%d: Love is not all you need!\n", t);
}
return 0;
}


Please feel free to use it after adding this blog as an reference. (http://autekroy.blogspot.tw) If there is any mistake or comment, please let me know. :D 

歡迎使用與分享任何內容,但請記得標示此部落格為出處。(http://autekroy.blogspot.tw/) 如果有發現任何的錯誤與建議請留言或跟我連絡。 : )

沒有留言:

張貼留言

請留下您的任何想法或建議!
Please leave any thought or comment!